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Abstract—This paper provides a quantitative assessment of the 
economic i mplications of larg e scale Photovoltaic (P V) 
investment a nd Electric V ehicles (EV) uptake for th e 
Australian National Electricity Market (NEM).  A probabilistic 
generation portfolio modelling tool is used to ass ess th e 
potential im pact o f different combinations of PV  and EV 
penetrations on the overall electricity industry costs, associated 
cost u ncertainties, a nd g reenhouse g as emissions o f differen t 
future g eneration p ortfolios. Th e o ther generation options 
include conventional coal, combined cycle gas turbine (CCGT) 
and open cycle gas turbine (OCGT) plants. The impacts of EV 
uptake o n hourly e lectricity de mand w as accounted for 
through the simulation of EV ch arging behaviour using actual 
Australian v ehicle trav el pattern  s urvey d ata. T wo EV 
charging in frastructure cases  (residential only  a nd u niversal 
charging) were included to a ccount for the impact of possible 
infrastructure ch oices o n the tem poral ch aracteristic o f 
charging. Re sults highlight so me pote ntial s ynergies be tween 
PV generation and EV ch arging in  red ucing costs for fu ture 
electricity industries, particularly in the context of significant 
carbon p rices. However, r esults al so emphasize th e n eed for 
appropriate EV charging s trategies to maximize the potential 
value o f high PV an d EV p enetration l evels within futur e 
electricity industries.  

Keywords-component; ph otovoltaics (PV ), el ectric veh icles, 
Australian National E lectricity M arket (N EM), generation 
portfolio analysis 

I.  INTRODUCTION 
Solar ph otovoltaic (P V) has been  one of the  fastest 

growing Re newable Ener gy (RE) t echnologies w orldwide 
over the past deca de. PV s ystem cost s in Austra lia ha ve 
declined by around 30-35 per cent over the last few years [1] 
and the technology is bec oming increa singly com petitive 
with conventional gener ation opti ons par ticularly if c arbon 
emissions are  priced [2, 3 ]. Beyond its falling costs, th e 
potential role of PV in help ing address th e ene rgy security  
and envi ronmental challenges fac ing electricit y industries 
worldwide is  also expec ted to result in PV generation 
continuing to grow rapidly.  

On the demand side, plug-in  Electric V ehicles (EV) are 
emerging as a pot entially sign ificant elem ent of the fut ure 
transport vehi cle fl eet in b oth developed and  de veloping 

markets with uptake driven by questions of future petroleum 
availability an d pricing as well as c oncerns over c limate 
change [4, 5].  

From t he perspective of the electricity i ndustry, EV 
uptake w ill result  in increased dem and along w ith an 
increase in absolute CO2 emissions [6] unle ss the electricity 
used to recharge EVs is  sourced from zero emission sources 
such as RE. V ariable and somewhat un predictable RE 
generation such as PV could grea tly benefi t from t he 
presence of EVs in the po wer system as a result of t he 
flexibility of EV charging load and large aggregated storage 
capacity associated wit h sig nificant u ptake l evels. In  thi s 
regard, there m ay be synergies between the roles played by 
PV and EV s in fu ture el ectricity syst ems w hich c ould 
facilitate higher penetrations of both EVs and PV than would 
otherwise be the case.  

Accommodating high EV a nd P V penetration leve ls, 
however, p oses sign ificant challe nges for the electricity 
industry [7 ]. While the int eraction betw een P V and EVs  
within a future electricity system may result in benefits, both 
technologies have  ver y diffe rent tec hnical a nd economic 
characteristics to c onventional gener ation te chnologies an d 
end-user loads. A s a resul t, sign ificant de ployment le vels 
might pro ve qui te challe nging for e lectricity in dustry 
operation and  plann ing. PV gener ation is cyclic, hig hly 
variable and s omewhat unpredicta ble. EV  charging is a lso 
cyclic, variable and somewhat unpredictable, although it also 
offers significant energy storage potential. Given the promise 
of both technologies and the se challenges, t here i s value in  
better understanding t heir i mplications, sepa rately an d 
synergistically, on  th e eco nomics of future elec tricity 
industries. 

This paper aims to provide a  quantitative assessment of 
the poten tial ec onomic impli cations of large  sca le PV 
investment an d EV  uptake w ithin t he broa der context o f 
generation investment in the Australian National Electricity 
Market (N EM). The paper employs a novel pr obabilistic 
generation portfolio model ling tool [8] to assess the impact 
of different P V pene trations, a nd EV fleet si zes and 
associated c harging i nfrastructure, on the over all e lectricity 
industry co sts, associated cost ris ks, and C O2 e missions of 
different p ossible future ge neration portfol ios. The  othe r 
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generation options inclu de conve ntional coal, c ombined 
cycle gas t urbine (CCG T) and open cycle gas turbine 
(OCGT) pl ants. Thi s si mulation based modelling tool can 
assess these f uture genera tion po rtfolios aga inst multiple 
objectives for a range  of future uncertainties including coal 
and gas prices, carbon prices, plant capital costs and levels of 
electricity demand. The tool has been previously applied to a 
number of case studies including the economics of high wind 
and P V penetratio ns in the N EM [9, 10]. This paper 
however, represents the first a pplication which incorporates 
both PV and EVs.  

Section II  descri bes the methodology used in th is paper 
which is based on probabilistic generation portfolio analysis. 
Section III provides t he description of the A ustralian NEM 
case study. The results and analysis are presented in Section 
IV followed by conclusions in Section V. 

II. METHODOLOGY 

A. Probabilistic Generation Portfolio Modelling 
The modelling tool extends conventional Load Duration 

Curve (LD C) b ased opt imal gene ration mix techn iques by  
using Mon te Ca rlo Simulation ( MCS) t o for mally 
incorporate ke y un certainties w hich direc tly impa ct overall  
generation cos ts int o the assessme nt. Th e t ool pro duces 
outputs w hich incl ude t he complete proba bility d istribution 
of ann ual ge neration cos ts and CO 2 emissi ons for each 
possible ge neration p ortfolio comprising some m ix of 
different generation options. For simplicity, these probability 
distributions can be represented a s an expected annual cost 
and associated standard deviation. While thi s paper refers to 
the standard de viation a s the ‘cost  uncertainty’, it c an b e 
taken to have a similar meaning to ‘cost risk’ as used in t he 
economic and  financial con text. The co mplete range of 
possible generation portfolios are considered by varying the 
share of each technology in the portfo lios from 0% to 100 % 
of total installed system capacity. 

The too l t hen a pplies fi nancial portfol io methods t o 
determine an Efficient Frontier (EF)1 of expected (i.e. mean) 
costs and t he associated cost u ncertainty (i .e. st andard 
deviation) for each of the diffe rent generation portfolios. EF 
techniques provide a basi s for explic itly analysing cost and 
risk t radeoffs among d ifferent g eneration technology 
portfolios. In  par ticular, th e EF is  made up of tho se 
generation portfo lios which offer the low est expe cted cost  
for some level of cost uncertainty.  

Other EFs can also  be constructed to repr esent ot her 
tradeoffs between objectives such as expec ted costs against 
CO2 e missions. As suc h, the to ol prov ides a flexib le 
framework fo r undertakin g multi-criteria assessme nts of 
future generation portfolios under multiple uncertainties.  

B. Incorporating PV generation and EV load  
PV generation and EV cha rging l oad ar e incorporated 

into the mode l by varyin g the time -series of elec tricity 
demand. As a result of PV’s low operating costs compared to 
fossil-fuel ge neration, the a nalysis pre sented here  assumes 
that PV is allowed priority dispatch. Using this assumption , 

                                                                                                    
1 The efficient fr ontier concept is u sed in th e Mean Variance Portf olio 
(MVP) theory for financial portfolio optimization [11]. 

simulated hou rly P V genera tion is subtracted from h ourly 
‘native’ demand over  the c ourse of a  ‘representative’ year.  
In contrast, hourly EV  c harging lo ad is added to na tive 
demand in each period. In th is manner, the temporal match 
of PV generation and EV charging with electricity demand is 
appropriately captured. 

The resulting net demand in each period, after accounting 
of PV generation and EV charging load, is then rearranged in 
descending order of magnitude to obtain a residual (net) load 
duration curv e (RLD C) to be se rved by con ventional 
generation technologies in the portfolio.  

Note that w hile t he use  o f LD C a nd RLD C techniques 
have ma ny a dvantages i n inve stment pla nning, they do 
remove the un derlying chron ology (hour by hou r change) 
associated with the underlying demand, solar generation and 
EV charging load. As such, the simulation tool is more suited 
to assessin g long run societal  inves tment cost s and  ris ks 
under high u ncertainty, ra ther  than problem s r equiring 
detailed opera tional model ling In particular, operational 
constraints associated with unit commitment such as start-up 
and shut down time s, ra mp ra tes, or netw ork l osses are  n ot 
accounted for.  

III. THE AUSTRALIAN NATIONAL ELECTRICITY MARKET 
(NEM) CASE STUDY 

The A ustralian N ational El ectricity Mar ket (NEM) is 
used as a case study with conventional coal, combined cycle 
gas turbine (CCGT), open cycle gas turbine (OCGT) and PV 
plant opti ons. Like m any elec tricity i ndustries around  th e 
world, the N EM faces highl y unc ertain fu ture fuel pr ices, 
carbon prices, electricity de mand and plant ca pital cost s.  
2010 is used  as the reference yea r w ith ac tual hourly 
electricity demand data, and PV  generation simulated from 
satellite derived hourly solar estimates, across the same year.  

Generator c haracteristics a nd c ost par ameters a re based  
on the 203 0 cost estimates pr ovided by  the Australian 
Energy Techn ology A ssessment (A ETA) r eport of th e 
Bureau o f Re sources and  Ene rgy Economics (BREE) [1]. 2 
EV c harging loa d profi les a re sim ulated based on actu al 
Australian vehicle travel pattern data obtained from the New 
South Wales Household Transport Survey (NSW HTS). 

In order to capture the effects of different PV deployment 
and EV uptak e levels, PV e nergy penetra tions from 0% to 
20% in 5% increments are simulated for all possible thermal 
generation portfolios. Thre e differ ent EV fleet sizes were 
also consi dered: 0%, 20% and 50% of total residential 
vehicles.  

A. Electric Vehicle Modelling 
The tempora l chara cteristic of EV  cha rging loa d is a 

function of t he transport behaviour of ind ividual drivers and 
the loca tional ava ilability of charging infra structure.  
Therefore, in order to obtai n a set  of a ppropriate cha rging 
load profi les it  is nec essary to expli citly consider  bo th 
passenger vehicle level transport behaviour and the location 
of recharging infrastructure available to sati sfy EV charging 
energy r equirements. Specifically, underlying ve hicle us e 
patterns were obtaine d from the NS W H TS w hich is a 
                                                                                                    
2 All monetary values in the paper are shown as Australian dollars which is 
about $US 0.9 at current exchange rate 



logbook ba sed house hold tra vel survey conduc ted in  the 
Sydney Greater Metropolitan area [12]. Thi s was combined 
with two infrastructure scenarios (residential charg ing only  
and universal charging) to ac count for the po tential impacts 
of different infra structure availability on the  electric vehicle 
charging load profile.  

The NSW HTS is a  rolling survey of 500 0 households a 
year which tracks the trips m ade b y e ach ve hicle o ver t he 
course of one day during the working week and weekend. It 
includes details of t rip distance, departure and arrival times, 
trip purpose, and parking location at t he point of arrival for 
each vehicle. In order to improve the statistical validity of the 
transport sam ple, 10 ye ars of pooled tra vel data wa s use d 
between 200 2 and 2012 in re spect of  51,800 in dividual 
vehicles and 216,566 vehicle trips to obtain the EV charging 
load results pre sented here . While the N SW H TS c ontains 
trip data for a range of vehicle t ypes, 4WDs, t rucks, 
Motorcycles, Goods V ans, U tility V ehicles, and Family 
Vans, we have restricted our assessment to the passenger car 
category which re presents a  st atistically weighted S ydney 
GMA passenger car fl eet of 1,821, 500 driven on the travel 
day surveyed. 

In o rder t o de termine the  c harging behav iour of  eac h 
electric vehicl e in the NSW HTS fle et, a time ba sed 
simulation method was used to establish t he Battery State of 
Charge (SOC), charging load, and fuel consumption for each 
vehicle across the course of t he simulated day (weekend or 
working w eekday). The tw o charging i nfrastructure c ases 
considered included residential charging in w hich a vehicl e 
is able to recharge when parked a t any residential location; 
and universal charging in which a vehicle is assumed to have 
access to recharging infrastructure at any location at which it 
is parked. In recognition that  the willingness of a  driver to  
recharge at a particular location will be a function of the time 
parked at that  loca tion, a min imum 10 minute dw ell tim e 
constraint is applied such that  a vehicle must be parked at  a 
location for ov er 10 min utes in  order t o rec harge.  
Recharging commences immediately upon arrival as long as 
this requirement is satisfied.  

The simulation too l imple ments a  medium siz ed 
passenger P lug i n H ybrid Vehicle (PHEV) as t he electric 
vehicle type investigated here with a series dri vetrain and a  
petrol in ternal combustion engine for  range e xtension 
(modelled using binary Charge Depletion/Charge Sustaining 
modes of operation). It i s int ended to be bro adly 
representative of a General Motors Volt [13]. The model was 
implemented using the S imulink and S tateflow pac kages 
integrated int o Matlab with state  logic ada pted from t he 
framework for the operation of electric vehicles in a  power 
system described in [14 ].  Battery elec tricity c onsumption 
when driven in Charge  D epletion m ode w as e stablished 
through the use of ADVIS OR the ve hicle drive train 
simulation softw are released by the N ational Rene wable 
Energy Laboratory (NREL) [15]. ADVISOR was used with 
the U S EP A Urba n D ynamometer Driving S chedule 
(UDDS), which is represe ntative o f the veloc ity, 
acceleration, and  bre aking u nder urba n drivi ng c onditions 
[16], to establ ish t he avera ge curr ent draw, inclu ding t he 
effects of r egenerative braking. Gasoline consumption while 
in Charge Sustaining m ode is taken to be 15.7 km/L 
corresponding to t he prem ium gasoli ne fuel effi ciency 
reported for the Volt [17].  

The result s o btained for each ind ividual NSW HTS 
vehicle w ere then statistically weighted t o the S ydney 
Greater Metropo litan A rea fleet size  using w eightings 
supplied for that purpose from the NSW Bureau of Transport 
Statistics. Following weighting, Sydney GMA passenger car 
fleet results are then scaled to r epresent th e pa ssenger car 
fleet size for the Australian States making up the footprint of 
the NEM according to the penetration level desired.  

B. Electricity Demand and PV Generation Modelling 
Hourly electricit y dem and data i s obtained by 

aggregating th e ac tual 30-m inute 20 10 de mand i nto hou rly 
values. Not e that actua l wind gener ation, which accounted 
for abou t 5%  of t otal gene ration i n 20 10, has also been  
incorporated into the RLDC. 

System A dvisor M odel (S AM) 3  software was  used to 
model hourly PV generation across different NEM locations 
including major citi es and some regional areas. In thi s way 
the diver sity value of PV across different locations w as 
captured. The hourly PV output in each selected location was 
simulated based on a 1-MW fixed flat plate  solar PV plant, 
with north-fac ing arrays and tilt ed at latitu de angle, usi ng 
satellite derived 2010 solar data and ground station weather 
data. For PV located i n ma jor c ities, it i s assum ed t hat n o 
additional ne twork investment i s r equired to ac commodate 
this addit ional PV genera tion. H owever, addition al 
transmission cos ts associated wit h cent ralized PV plants in 
regional locations a re taken int o consid eration in th e 
simulation as explained in detail in [9]. 

Installed P V genera tion capa city i s assume d to be the 
same for each of the selected locations. For each penetration 
level t he insta lled P V c apacity i s deter mined based o n a 
constant PV capacity factor of 21% a s estimated in [1].  The 
simulated hou rly PV ge neration i s then sca led u p to t he 
desired PV energy penetration level. 

As previously expla ined i n Section II, PV generation i s 
given pri ority in t he dispatch t herefore being treated as 
negative load and subt racted f rom ac tual hourly dem and. 
Simulated hourly EV charging load is then added to produce 
the net dem and curve which i s then rearra nged t o o btain a  
RLDC w hich is t o be  served by conventi onal gener ation 
technologies in the investigated portfolios.  

Fig. 1 illustrates demand profiles with 5% PV penetration 
and EV charging load for a fleet size of 20% during a typical 
summer week for both EV charging infrastructure cases. EV 
charging load will ul timately increase overall peak demand 
for b oth char ging in frastructure sce narios. H owever, t he 
provision of universal EV charging infrastructure is observed 
to re-di stribute to  some e xtent EV  charging load from the  
dominant e vening cha rging pe ak, under the r esidential 
infrastructure case. Most significantly however, the universal 
recharging infrastructure case produces an EV c harging load 
pattern which is better correlated with PV generation output. 
This su ggests th at t he provision o f EV char ging 
infrastructure represents an  i mportant variable t o conside r 
when plann ing a  future pow er syst em which w ill include 
high EV and PV (or other solar) penetrations. 

                                                                                                    
3 SAM is a tool developed by the National Renewable Energy Laboratory 
(NREL) to model the performance and cost of grid-connected RE [18]. 



The RLDCs (to be me t by conve ntional generation 
technologies) for each o f the diffe rent PV and EV 
penetration lev els are show n in F ig. 2 w ith an increasing 
difference in the R LDC obse rved between  the two  EV 
charging i nfrastructure cases for the 0% and 20% PV 
penetration levels. This difference is most notable at higher 
EV pene tration levels and show s the e ffect of moving E V 
charging load from t he eveni ng peak, under the re sidential 
charging c ase, throughout the da y t hereby improvin g t he 
correlation of EV charging with PV generation. 

 
Figure. 1. Wee kly d emand, PV o utput and E V l oad during a  ty pical 
summer week for residential and universal charging infrastructure cases. 

C. Generator Data 
The amount of installed conventional generation capacity 

is d etermined usi ng a probab ilistic a pproach to ensure th at 
there is suffi cient gene ration c apacity to meet the expected 
demand fo r at lea st 99.998% of the time during the year. 

Table I shows t he ins talled PV c apacity, pea k demand and  
installed fossi l fue l ge neration capacity for each of the 
different PV and EV penetration levels. 

TABLE I. INSTALLED PV AND CONVENTIONAL CAPACITY FOR 
DIFFERENT PV PENETRATIONS, EV FLEET SIZES AND CHARGING 

INFRASTRUCTURE OPTIONS 

EV fleet 
size (%)

PV 
(%) 

Installed 
PV 

capacity 
(GW) 

Residential charging Universal charging 
Residual 

peak 
demand 
(GW) 

Installed 
fossil-fuel 
capacity 

(GW) 

Residual 
peak 

demand 
(GW) 

Installed 
fossil-fuel 
capacity 

(MW) 

20 

0 0 34. 4 38.5 34.3 38.4 
5 5.7 34  38 33.4 37.5 
10 11.3 34  38 33.4 37.4 
15 17 34  38 33.4 37.4 
20 22.6 34  38 33.4 37.4 

50 

0 0 37. 5 42 36.4 40.8 
5 5.7 37. 5 42 36.2 40.5 
10 11.3 37. 5 42 36.2 40.5 
15 17 37. 5 42 36.2 40.5 
20 22.6 37. 5 42 36.2 40.5 

 
New entra nt ge neration dat a for each c onventional 

generation technology were based on the 2030 cost estimates 
obtained from the 2012 AETA report and are shown in Table 
II. A nnualized capital costs a re determined usi ng a 5% 
discount rate. 

TABLE II. GENERATOR DATA 

Parameters Technology 
Coal CC GT OCGT Solar PV

Plant life (years) 50 40 30 30 
Capital cost ($/MW) 2,950,000 1, 110,000 750,000 1, 570,000
Fixed O&M ($/MW/yr) 50,500 10,000 4,000 25,000 
Variable O&M ($/MWh) 7 4 10 0a 
Thermal Efficiency (%) 41.9 49.5 35 N/A 
Heat Rate (GJ/MWh) 8.591 7.272 10.285 N/A 
CO2 emission factor 
(tCO2/MWh) 0.773 0. 368 0.515 0 

Fuel price ($/GJ) 1.65 8 8 0 
a. Already included in fixed O&M 

 

 
Figure. 2. LDCs and RLDCs for different EV fleet sizes and PV penetrations for different charging infrastructure scenarios.



D. Modelling Uncertainties 
The inherent uncertainty associated with the future values 

of key c ost pa rameters and e lectricity dema nd i s exp licitly 
accounted for  in the m odelling a pproach a pplied in this 
study. K ey pa rameters for which unce rtainty is modell ed 
include fuel pr ices, ca rbon price and pl ant capi tal costs, 
which a re m odelled by l ognormal distributions. A normal 
distribution is assum ed for e lectricity dem and uncertainty. 
Both Log normal and Normal distributions can b e 
characterised by th eir mean (expected value) a nd standard 
deviations (SD).  

The expected valu es and SDs of fue l prices and capita l 
costs ar e de termined from the 2030 estimates a nd the 
percentage uncertainties provided in the 2012 A ETA report 
[1].  The SD s of coal and natural gas price  distributions are 
estimated to be 6% and 3 0% of the ir expe cted values 
respectively. Different e xpected (m ean) c arbon prices are 
considered in this study with their SDs assumed to be 50% of 
their expe cted values given prese nt unc ertainties r egarding 
future climate policy efforts. Correlations between fuel an d 
carbon prices are a ccounted for a nd are estimated based on  
historical t rends in  O ECD c ountries [8]. Table III and IV 
show the expected va lues and SDs of fuel p rices and plan t 
capital costs for each technology option. 

TABLE III. MEAN AND SD OF FUEL PRICES 

$/GJ  Coal price  Gas price 
Mean 1. 65 8 

SD 0.1 2. 4 
 

TABLE IV.  MEAN AND SD OF PLANT CAPITAL COSTS 

$/MW C oal CCGT OCGT PV 
Mean 2, 950,000 1,100,000 800,000 1,600,000 

SD 1,200,000 320, 000 230,000 940,000 
 

A Mul tivariate Mo nte Carl o simulation technique 4  is 
used t o gener ation corre lated samples for coal, gas and 
carbon price s from their respecti ve marginal lognormal 
distributions. 

Electricity demand unce rtainty i s modelled usi ng th e 
variations in the RLDC according for eac h PV penetration, 
EV fleet size and charging infrastructure case.  Each sample 
RLDC is derived based on e ach sample of net pe ak demand 
for ea ch PV penetration, EV flee t si ze case and charging  
infrastructure scenario. The  SD of net peak dem and is 
estimated based on the likelihood that the maximum demand 
will exceed projections for any given year using 90%, 50% 
and 10% ‘ probability of exce edance’ (P OE) provided b y 
AEMO [19]. The SD of peak demand is approximated as 4% 
of the central projection, which corresponds to the 50% POE 
case. The  difference between a  sa mple an d refe rence peak  
demand is then used to adjust the demand in every period of 
the reference RLDC. There are some instances in which the 
simulated resi dual peak de mands exc eeds th e i nstalled 
conventional gene ration c apacity resul ting in energy n ot 
                                                                                                    
4  Multivariate simulation techniques a re us ed for  reproducing r andom 
samples of uncertain parameters while preserving their respective marginal 
distribution properties and correlation structure. 

being serve d. The value of e nergy not  served used in th is 
study is $1 2,900/MWh, wh ich i s t he c urrent NEM  ma rket 
ceiling price. The cost of energy not served is included in the 
overall generation cost during each Monte Carlo run. 

IV. SIMULATION RESULTS AND ANALYSIS 
For each PV penetration level, EV fleet size and charging 

infrastructure scenario, th e calculation of overa ll ind ustry 
costs and emissi ons for  ea ch convent ional gener ation 
portfolio is repe ated for 10,000 si mulations of uncerta in 
future fue l prices, carbon pric e, demand and plan t ca pital 
costs. In  tot al, 66  possi ble c ombinations of conventional 
plant w ere consi dered w ith t he proporti ons of c oal, CCG T 
and OCGT being varied from 0% to 100% in 10% intervals.  

The se nsitivity of  t he results to  carbon pri ces c an be 
assessed by r unning the m odel with diffe rent car bon price 
inputs. The  carbon price s used in thi s stu dy focus on  
moderate to high price s given that m any of the modelle d 
estimates for w hat fut ure global carbon prices w ill be 
required to  effectively a ddress cli mate change a re in  the  
range of $100/tCO2 over the next twenty years [20, 21]. 

Fig. 3 show s t he distri bution of 10,000 sim ulated c oal, 
gas a nd car bon prices (a t $20/tCO2) as well a s the scatt er 
plots which highlight their correlations. 

 
Figure. 3. D istributions o f 10, 000 sa mple of correlated f uel and carbon 
prices and their scatter plots showing their correlations. 

The capita l co st dis tributions re sulting fro m the 10,000 
simulations for each generation option are shown in Fig. 4. 

 
Figure. 4. Distribution of capital costs for each generation technology. 



A. Without a Carbon Price 
In order to illustrate the concept of, and outputs produced 

by t he modelling t ool, F ig. 5 show s the ex pected annua l 
generation co st, associated  cost uncertain ty, and CO 2 
emissions of d ifferent t hermal genera tion portfolios in  the  
absence of PV gene ration, EV load,  or a carbon  price. Note 
that not every generation portfolio is presented to aid clarity.  

The cost-risk Efficient Frontier (EF) which contains three 
optimal generation portfolios, as denoted (A), (B) and (C), is 
presented on the graph as sh own by a solid line. The lowest 
cost portfo lio is (A) which contains 70% coal, 10% CCGT 
and 20% OCGT while the lowest risk portfolio is (C) w hich 
contains 5 0% coa l, 30% CCGT and 2 0% O CGT. Th e 
tradeoff in terms of expected cost, risk and emissions among 
portfolios can be seen on the  EF. For example portfolio (A) 
has the low est e xpected cost but  a lso has relatively hi gher 
risk compared to portfolios (B) and (C). 

 
Figure. 5. E xpected annual s ystem c osts, c ost uncertainty a nd CO2 
emissions of generation portfolios for the case without EV, PV or a carbon 
price. Th e ex pected costs ar e r epresented by the ci rcles an d th e CO2 
emissions of the  cor responding portfolios a re r epresented th e asterisks in  
the same vertical line.  

Fig. 6  show s the impact of different EV  penetration 
levels on the cost-risk EF s for the case w ithout a  carb on 
price or any PV generation. Given that EV charging involves 
a net increase in electricity system load, we see  that higher 
EV penetration levels increase electricity generation costs in 
the case without PV as indicated by the upward movement of 
the EF as EV flee t size i ncreases for both chargi ng 
infrastructure cases. 

The i mpact of PV generation on  exp ected annua l 
generation cost  and associated cost uncertainty i s shown in 
Fig. 7 for the  case w ith 20% EV fl eet si ze and without a 
carbon price. By holding the EV penetration level constant at 
20% and increasing the P V penetration, we  see that hi gher 
PV penetration increases overall system generation costs as 
well as cost uncertainty. This increase is due to the additional 
capital c osts associate d with  PV plants d ue to t heir lo w 
capacity factor relati ve to c onventional techn ologies (i. e. a  
higher a mount of c apacity i s required to m eet the same 
amount of dem and). In addi tion, we  observe that there is a 

difference in  c ost be tween the two EV char ging 
infrastructure scena rios with the overall system  c ost be ing 
somewhat lower under t he universal chargi ng ca se w hen 
compared t o the re sidential charging ca se. These cost 
differences become more a pparent at higher PV penetration 
levels due  t o the EV load profile u nder the uni versal 
infrastructure case havin g a  higher correlation w ith t he PV 
generation pr ofile. As a  result, the provisio n of non-
residential c harging in frastructure in a  power syst em with 
high EV and PV penetration levels is observed to provide an 
economic benefit in elec tricity system operations t hrough a 
reduction in expected operating cost. 

 
Figure. 6. Cost-risk efficient frontiers for different EV fleet sizes in the case 
without a carbon price and PV generation. 

 
Figure. 7. Cost-risk efficient frontiers for different PV penetrations 

We can see from Fig. 6 and Fig. 7, that in the absence of 
a carbon pric e (or w ith a very low price),  t he opti mal 
generation portfolios consist mainly of coal supplemented by 
differing a mounts of CCG T and O CGT. H owever, given  
international concerns over cli mate change and the 
movement of a growing number of countries to a ddress the 
market failures associated with the negative external costs of 



climate chang e there is a  need to consider the effects of 
meaningful carbon pricing on optimal generation mixes. 

B. With a Carbon Price 
This sectio n presents re sults obt ained wh en a carbon  

price is includ ed thereby a llowing impa cts in the optimal 
generation portfolios on the EFs given the different PV and 
EV cases to be identified.  

1) A Carbon Price of $50/tCO2 
Fig. 8 sho ws the cost -risk EF for an expec ted carbon 

price of $5 0/tCO2. At this carbon pri ce, the increa se i n the  
expected sys tem generation c ost a rising from higher P V 
penetration is, as expec ted, l ess t han in the  case without a  
carbon p rice. Indeed, as the P V penetration level incre ases 
from 0% t o 5% a re duction i n overa ll generation cost i s 
observed under both EV  charging i nfrastructure sce narios. 
As an example, the expected generation costs of portfolios A 
– C in the case of 5% PV are actually lower than the 0% PV 
case when a carbon price of $50/tCO2 is applied.  

The results presented in Fig. 8 show that the lowest  cost 
generation portfolio for every PV penetration is portfol io A 
(50% c oal, 30% CCG T, 20 % COGT) exce pt for 20% PV 
which is portfol io G (40% coal, 30% CCG T, 30% O CGT)5 
which represent s a significa nt reduction i n the am ount of 
coal generation from the case without carbon pricing.  

 
Figure. 8. Cost-risk EF showing optimal generation portfolios for different 
PV penetrations in the case of $50/tCO2 and 50% EV. 

In order to see how the optimal generation mixes change 
as PV pene tration leve ls increase, Fig. 9  pre sents the  
generation m ix ma king u p the low est cost genera tion 
portfolio for e ach PV penetration level under the residential 
EV charging case. From this, the total generation capacity is 
seen to increase quite considerably, from about 40 GW in the 
case without P V t o 65 GW in the ca se of 25% PV 

                                                                                                    
5 Note that the percentage shares of  the portf olios shown in this p aper are 
the (residual) thermal technology portfolios after accounting for the  share 
of PV. For example the actual technology share of por tfolio G (40% coal, 
30% CCGT, 30% OCGT) for  20% PV is actually 25% coal, 19% CC GT, 
19% OCGT, 37% PV.  

penetration. The extent of this increase can be explained by 
the additional PV capacity which is re quired to com pensate 
for its relatively low capacity factor. 

 
Figure. 9.  Insta lled ca pacity of ea ch tec hnology o f the l owest cost 
portfolios fo r di fferent PV p enetrations in the  case of $50/tC O2 and 20% 
EV. 

Fig. 10 compares the expected cost, cost uncertainty and 
CO2 em issions of  the low est c ost portfoli os for each PV 
penetration level for a $50/tCO2 of carbon price and 20% EV 
fleet size.  Whi le a reduc tion in system ge nerating cost is 
observed as PV  penetra tion is i ncreased fro m 0% to 5 %, 
(which occurs as a result of variable ge neration costs offset 
by PV dec reasing greate r t han the increa se in fixe d ca pital 
costs associat ed with addit ional PV insta llation) as PV 
penetration levels increase above 5%, costs begin to increase 
which suggests an economic optimum PV penetration level 
of a round 5%.  In contrast to the incre ase i n expected cost, 
increasing PV penetra tion levels are observed to resul t in a 
significant reduction in generation cost uncertainty and CO2 
emissions.  

 
Fig. 10. E xpected co sts, S Ds and CO2 emis sions of the lowest cost 
generation portfolios for di fferent PV penetrations in t he case of $50/t CO2 
and 20% EV. 

2) A  Carbon Price of $80/tCO2 
In order to assess the sensitivity of the results to a higher 

carbon price Fig. 11  sh ows t he expected c ost, cost  
uncertainty and CO 2 e missions of t he lea st c ost gener ation 
portfolios for a carbon price  of $80/tCO 2. At t his carbon  
price, overall industry expected costs decline significantly as 
PV penetra tion levels incr ease. A t a carbon price  of 
$80/tCO2 th e cost  di fference between t he 25% PV  and 0% 
PV cases is approximately $0.6 billion per ye ar.  Consiste nt 
with previous results, the costs associated w ith universal EV 
charging infrastructure are observed to be lower than under 
the residential charging infrastructure case.  



 
Figure. 11.  Expected c osts, SDs a nd CO2 e missions of the  lowest c ost 
generation portfolios for different PV penetrations in the case of $80/tCO2 
and 20% E V. No te th at the  CO2 an d S D of co st cu rves are l argely 
overlapping for both infrastructure cases. 

V. CONCLUSIONS 
This paper has provi ded a high level analys is of th e 

potential economic implications of large scale future PV and 
EV penetra tions w ithin the broader conte xt o f genera tion 
investment in  t he A ustralian N ational Electricity Ma rket 
(NEM). A p robabilistic gene ration portfol io modelling t ool 
was employed to assess the expected costs, cost uncertainties 
and CO 2 emissions of possi ble future  genera tion portfoli os 
given different PV penetrations, carbon prices, and EV fl eet 
sizes. In addition to the two EV charging infrastructure cases 
considered (residential and universal) the analysis considered 
four generation investment options: coal, CCGT, OCGT and 
PV. Uncertainty with respec t to future coal, gas, and c arbon 
prices in additio n to  e lectricity de mand a nd plan t capita l 
costs were included in the m odel via the use of Monte Carlo 
methods.  

Simulation results highlight the value of PV generation in 
satisfying a proportion of the additio nal dem and for EV  
charging depe nding on fut ure c arbon pri ce le vels. Lo w 
carbon price s result s in additional P V incre asing overall 
system costs and EV penetration increasing cost uncertainty. 
However, for moderate carbon prices (i.e. st arting from  
$50/tCO2), additional P V g eneration c apacity beg ins to  
reduce overall costs due to variable costs declining faster (as 
a result of avoided fuel and carbon costs) than the increase in 
capital costs due to the lower PV capacity factor. Regardless 
of the c arbon price, P V gene ration reduces r educe CO2 
emissions resulting from EV charging load.  

While r esults show that a dditional EV c harging loa d 
increases electricity dem and and sub sequently the  overall  
industry cost s, the i mpact o f EV charging infrastructure 
availability o n the tem poral chara cteristic of EV charging 
load has an i mpact on  ove rall i ndustry costs, with the  
universal cha rging option havi ng slig htly lower costs than  
residential onl y cha rging. Such c ost diffe rences be come 
more apparent with increasing PV and EV penetrat ions due 
to is due to its EV load pr ofile being be tter correlated with 
the PV generation.   

Results suggest that there are potential synergies between 
PV and EVs in reducing overall syst em co sts, co st 
uncertainties, and CO2 emissions particularly in the  case o f 
moderate to high fut ure carbon price. However, in order for 
future electricity industries to achieve maximum value from 
high PV a nd EV  pene trations there  is a need for better 

charging m anagement m easures to be i mplemented.  In  
addition t o future carbon pricing  a nd EV cha rging 
infrastructure provision, ac tive m anagement strategies will 
be required to manage the EV charging l oad patterns to take 
full advantage of PV generation. This aspect will be explored 
in future work. 
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